如何编写一个MR程序
0.依赖导入
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-slf4j-impl</artifactId>
<version>2.12.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.1.3</version>
</dependency>
</dependencies>
1.编写入口类
public class WordcountDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
// 1 获取配置信息以及获取job对象
Configuration configuration = new Configuration();
Job job = Job.getInstance(configuration);
// 2 关联本Driver程序的jar
job.setJarByClass(WordcountDriver.class);
// 3 关联Mapper和Reducer的jar
job.setMapperClass(WordcountMapper.class);
job.setReducerClass(WordcountReducer.class);
// 4 设置Mapper输出的kv类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 5 设置最终输出kv类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
// 6 设置输入和输出路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
// 7 提交job
boolean result = job.waitForCompletion(true);
System.exit(result ? 0 : 1);
}
}
2.编写Map类
public class WordcountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
Text k = new Text();
IntWritable v = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
// 1 获取一行
String line = value.toString();
// 2 切割
String[] words = line.split(" ");
// 3 输出
for (String word : words) {
k.set(word);
context.write(k, v);
//(红桃A,1)
}
}
}
3.编写Reduce类
public class WordcountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
int sum;
IntWritable v = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values,Context context) throws IOException, InterruptedException {
// 1 累加求和
sum = 0;
for (IntWritable count : values) {
sum += count.get();
}
// 2 输出
v.set(sum);
context.write(key,v);
}
}
4.打包运行
//hadoop jar 包名 全类名 输入路径 输出路径
[root@hadoop test]# hadoop jar mapreduce.jar WordcountDriver wcinput/ wcoutput
5.查看结果
原文件
黑桃A 红桃3
黑桃A
黑桃K
红桃8
黑桃A 红桃3
黑桃A
......
输出结果
红桃3 114048
红桃4 38016
红桃6 38016
红桃8 76032
黑桃A 139392
黑桃K 76032